
Part 1.3 Special limits v1 2019-20

Exponential Function

In this course we assume that ex is defined by the series

ex =
∞
∑

r=0

xr

r!
.

From your first year course you know this converges (absolutely) for all x ∈ R.

We will further assume that exey = ex+y for all x, y ∈ R. To prove this
you need results on when you can multiply series and rearrange the result.
Due to lack of time this will have to remain a gap in your knowledge, though
details of the general results can be found in Section 3.4, pp 105 - 115, and in
particular Corollary on p.114, of the book Guide to Analysis by Mary Hart
and published by Palgrave Mathematical Guides. For the application of the
general results to the specific example of ex see Theorem 7.4.1. of the same
book.

Lemma 1

|ex − 1− x| ≤ |x|2 (1)

for all |x| ≤ 1/2.

Solution makes use of the fact that if limn→∞ an = ℓ and the an are bounded
for all n ≥ 1, i.e. |an| ≤ B for some B, then |ℓ| ≤ B. For x ∈ R the definition
of ex is

ex =
∞
∑

r=0

xr

r!
= lim

N→∞

N
∑

r=0

xr

r!
.

Thus

ex − 1− x = lim
N→∞

N
∑

r=2

xr

r!
= x2 lim

N→∞

N−2
∑

n=0

xn

(n+ 2)!
(2)

Then, by the triangle inequality, (applicable since we have a finite sum),
∣

∣

∣

∣

∣

N−2
∑

n=0

xn

(n+ 2)!

∣

∣

∣

∣

∣

≤
N−2
∑

n=0

|x|n

(n+ 2)!
≤

1

3!

N−2
∑

n=0

|x|n

since (n+ 2)! ≥ 2! for all n ≥ 0,

=
1

2!

(

1− |x|N−1

1− |x|

)

,
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on summing the Geometric Series, allowable when |x| 6= 1. In fact we have
|x| ≤ 1/2 < 1, which gives the second inequality in

1− |x|N+1

1− |x|
≤

1

1− |x|
≤

1

1− 1/2
= 2.

Hence
∣

∣

∣

∣

∣

N−2
∑

n=0

xn

(n+ 2)!

∣

∣

∣

∣

∣

≤ 1

for all N ≥ 0. Therefore, since the sequence of partial sums converges, we
have

∣

∣

∣

∣

∣

lim
N→∞

N−2
∑

n=0

xn

(n+ 2)!

∣

∣

∣

∣

∣

≤ 1.

Combined with (2) gives the required result. �

On the problem sheets you are asked to extend (5) further, including the
term x3/3! in the left hand side.

Theorem 2 i)
lim
x→0

ex = 1.

ii)

lim
x→0

ex − 1

x
= 1.

Solution i. Open out the result of Lemma 1 as

1 + x− |x|2 < ex < 1 + x+ |x|2 ,

for |x| ≤ 1/2. Let x → 0 when limx→0

(

1 + x± |x|2
)

= 1 so, by the Sandwich
Rule limx→0 e

x = 1.

ii. Divide through (1) by |x| and open up to give

1− |x| <
ex − 1

x
< 1 + |x| .

The Sandwich Rule will again give the required result. �

Note “Divide through by |x| and then open up”; it will not work if you
“first open up and then divide by |x|”.

Aside limx→0 e
x = 1 means ex − 1 → 0 as x → 0. The question then is how

fast does ex − 1 tend to 0 as x tends to 0?

To answer this we look at the ratio, seen in part ii of the theorem. That
the limit in part ii exists and is non-zero says that ex − 1 tends to 0 at the
same rate as x tends to zero (the value 1 of the limit is irrelevant in this
discussion, it only needs to be non-zero).
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Trigonometric Functions

Lemma 3 Using the definitions of sin θ and cos θ as the ratio of sides in a
right-angled triangle, show that

lim
θ→0

sin θ = 0 and lim
θ→0

cos θ = 1.

Proof First assume π/2 > θ > 0. From

θ

1

A

B C

we have the lengths of the lines AB = sin θ, arc length AC = θ and BC =
1− cos θ.

Then AB ≤ AC implies sin θ ≤ θ. Trivially 0 ≤ sin θ for π/2 > θ > 0, so

0 ≤ sin θ ≤ θ,

for such θ. Let θ → 0+ to get limθ→0+ sin θ = 0 by the one-sided Sandwich
Rule.

If θ → 0− we use the fact that sin is an odd function, i.e. sin (−η) =
− sin η. Write θ = −η so η → 0+. Then

lim
θ→0−

sin θ = lim
η→0+

sin (−η) = − lim
η→0+

sin η = 0,

by above.

Since
lim
θ→0−

sin θ = lim
θ→0+

sin θ = 0

we deduce limθ→0 sin θ = 0 by an earlier Theorem.

For cos θ again start assuming π/2 > θ > 0. Then BC ≤ AC implies
1− cos θ ≤ θ, so

1− θ < cos θ < 1.

Let θ → 0+ to get limθ→0+ cos θ = 1 by the one-sided sandwich rule.
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If θ → 0− we use the fact that cos is an even function, i.e. cos (−η) =
cos η. Again replacing θ by −η we get

lim
θ→0−

cos θ = lim
η→0+

cos (−η) = lim
η→0+

cos η = 1

by the result already shown.

Since
lim
θ→0−

cos θ = lim
θ→0+

cos θ = 1

we deduce limθ→0 cos θ = 1 by an earlier Theorem. �

We now come to a fundamental result, with very many applications.

Lemma 4 Using the definition of sin θ as the ratio of sides in a right-angled
triangle, show that

lim
θ→0

sin θ

θ
= 1. (3)

Graphically:
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Proof Assume π/2 > θ > 0. From

θ

1

A

B CO D

we have lengths of lines OB = cos θ, AB = sin θ, and AD = tan θ.

For the areas we have

OAB =
1

2
sin θ cos θ,

OAC =
1

2
θ × r2,

OAD =
1

2
1× tan θ.

Then the inequality in areas OAB ≤ OAB ≤ OAD implies

sin θ cos θ ≤ θ ≤ tan θ.

This can be rearranged to give

cos θ ≤
sin θ

θ
≤

1

cos θ
.

Let θ → 0+ to get

lim
θ→0+

sin θ

θ
= 1,

by the one-sided Sandwich Rule.

For −π/2 < θ < 0 write η = −θ > 0. Then

lim
θ→0−

sin θ

θ
= lim

η→0+

sin (−η)

(−η)
= lim

η→0+

− sin η

(−η)

= lim
η→0+

sin η

η
= 1 by above.
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Since

lim
θ→0+

sin θ

θ
= lim

θ→0−

sin θ

θ
= 1,

both one-sided limits exist and are equal and thus the limit exists and equals
the common value. �

Example 5 Show that

lim
θ→0

cos θ − 1

θ
= 0. (4)

Graphically:

Solution For |θ| < π/2 we have

cos θ − 1

θ
=

cos θ − 1

θ
×

cos θ + 1

cos θ + 1
=

cos2 θ − 1

θ (cos θ + 1)

= −
sin2 θ

θ (cos θ + 1)
= −θ

(

sin θ

θ

)2
1

cos θ + 1
.

Thus by the product and quotient limit rules

lim
θ→0

cos θ − 1

θ
= −

(

lim
θ→0

θ
)

(

lim
θ→0

sin θ

θ

)2
1

limθ→0 cos θ + 1

= −0× 12 ×
1

2
= 0.

�

Aside Having a value of 0 for the limit shows that cos θ−1 tends to 0 quicker
than θ.
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Example 6 Evaluate

lim
θ→0

cos θ − 1

θ2
.

Graphically:

Solution For |θ| < π/2 we have

cos θ − 1

θ2
=

cos θ − 1

θ2
×

cos θ + 1

cos θ + 1
=

cos2 θ − 1

θ2 (cos θ + 1)

= −
sin2 θ

θ2 (cos θ + 1)
= −

(

sin θ

θ

)2
1

cos θ + 1
.

Thus by the product and quotient limit rules

lim
θ→0

cos θ − 1

θ2
= −

(

lim
θ→0

sin θ

θ

)2
1

limθ→0 cos θ + 1
= −

1

2
.

�

Aside Having a non-zero value for the limit shows that cos θ − 1 tends to
0 as fast as θ2. (Make sure you understand that θ2 tends to 0 quicker than
does θ; squaring numbers less than 1 makes them smaller.)

Important note We have not had to use L’Hôpital’s Rule which you may

remember from School. But this is how it should be since we haven’t yet defined

differentiation in this course and so cannot use L’Hôpital’s Rule! But even if we

had defined differentiation we will see later that we need the two limits above, (3)
and (4) , to calculate the derivatives of sin and cos. Thus it would be a circular

argument to use the derivatives of the trig functions to find, via L’Hôpital’s Rule,

the values of the limits above which are then used to find the derivatives of the

trig functions!
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